Videos

Regularization: Model Selection and Lasso

Presenter
June 19, 2013
Abstract
LS and Maximum Likelihood estimation (MLE) overfit when the dimension of the model is not small relative to the sample size. This happens almost always in high-dimensions. Regularziation often works by adding a penalty to the fitting criterion as in classical model selection methods such as AIC or BIC and L1-penalized LS called Lasso. We will also introduce Cross-validation (CV) for regularization parameter selection.