Videos

Stability of active suspensions

June 5, 2010
Abstract
Keywords: active suspensions, kinetic theory Abstract: One of the challenges in modeling the transport properties of complex fluids (e.g. many biofluids, polymer solutions, particle suspensions) is describing the interaction between the suspended micro-structure with the fluid itself. Here I will focus on understanding the dynamics of active suspensions, like swimming bacteria or artificial micro-swimmers. Using a recently derived kinetic model, I have investigated the linearized structure of such an active system near a state of uniformity and isotropy. I will show that system instability can arise only from the dynamics of the first azimuthal mode in swimmer orientation, that the growth of fluctuations for a suspension of anterior actuated swimmers is associated with a proliferation of oscillations in swimmer orientation, that diffusion acts as a smoothing parameter, and that at small-scales the system is controlled independently of the nature of the suspension. Finally a prediction about the onset of the instability as a function of the volume concentration of anterior actuated swimmers and a comparison with numerical simulations is made.