Recent Developments in Noncommutative Algebraic Geometry: "Deformations of stability conditions"

April 12, 2024
  • 14A22
Bridgeland stability conditions have been introduced about 20 years ago, with motivations both from algebraic geometry, representation theory and physics. One of the fundamental problem is that we currently lack methods to construct and study such stability conditions in full generality. In this talk I would present a new technique to construct stability conditions by deformations, based on joint works with Li, Perry, Stellari and Zhao. As application, we can construct stability conditions on very general abelian varieties and deformations of Hilbert schemes of points on K3 surfaces, and we prove a conjecture by Kuznetsov and Shinder on quartic double solids.