Discovering dynamical patterns of activity from single-trial neural data

September 18, 2023
In this talk I will discuss a data-driven method that leverages time-delayed coordinates, diffusion maps, and dynamic mode decomposition, to identify neural features in large scale brain recordings that correlate with subject-reported perception. The method captures the dynamics of perception at multiple timescales and distinguishes attributes of neural encoding of the stimulus from those encoding the perceptual states. Our analysis reveals a set of latent variables that exhibit alternating dynamics along a low-dimensional manifold, like trajectories of attractor-based models. I will conclude by proposing a phase-amplitude-coupling-based model that illustrates the dynamics of data.