Videos

Exponential mixing of frame flows for geometrically finite hyperbolic manifolds

Presenter
May 16, 2023
Abstract
The frame bundle of an n-dimensional hyperbolic manifold X is the homogeneous space Γ\SO(n, 1)° for some discrete subgroup Γ and the frame flow is given by the right translation action by a one-parameter diagonalizable subgroup. We assume that Γ is Zariski dense and X is geometrically finite, i.e., it need not be compact but has at most finitely many ends consisting of cusps and funnels. We endow the frame bundle with the unique probability measure of maximal entropy called the Bowen-Margulis-Sullivan measure. In a joint work with Jialun Li and Wenyu Pan, we prove that the frame flow is exponentially mixing. The proof uses a countably infinite coding and the latest version of Dolgopyat's method. To overcome the difficulty in applying Dolgopyat's method due to the cusps of non-maximal rank, we prove a large deviation property for symbolic recurrence to certain large subsets of the limit set of Γ.
Supplementary Materials