An Ax-Schanuel theorem for the modular curve and the j-function
Presenter
May 14, 2014
Keywords:
- differential field
- differential Galois theory
- Zilber-Pink conjecture
- elliptic curves
- Shimura variety
- j-function
MSC:
- 12Hxx
- 12H05
- 12H20
- 11Jxx
- 11J81
- 11J89
- 11J95
- 11-xx
Abstract
The classical Ax-Schanuel theorem states that, in a differential field, any algebraic relations involving the exponential function must arise in a 'trivial' manner. It turns out that one can formulate natural analogues of this theorem in the context of uniformization maps arising from Shimura varieties, the simplest case of which is the j-function. Besides their inherent appeal, such analogues have applications to the Zilber-Pink conjecture in number theory; a far reaching generalization of Andre-Oort.
We will explain these analogues and sketch a proof in the case of the j-function. This is joint work with J.Pila.