Videos

A Galois theory of supercongruences

Presenter
March 31, 2017
Keywords:
  • Galois theory
  • Galois orbits
  • periods
  • prime powers
  • modular arithmetic
  • p-adic number theory
  • p-adic zeta functions
  • Coleman integrals
  • multiple zeta values
  • motivic Galois group
  • period conjecture
MSC:
  • 11R34
  • 11R32
  • 11Rxx
  • 11-xx
  • 14-xx
  • 14Cxx
  • 14C30
  • 11K41
  • 11Kxx
  • 11Mxx
  • 11M38
  • 11F67
  • 11F32
  • 11Fxx
  • 14F30
  • 33D80
  • 11F33
Abstract
A supercongruence is a congruence between rational numbers modulo a power of a prime. Many supercongruences are known for rational approximations of periods, and in particular for finite truncations of the multiple zeta value series. In this talk, I will explain how the Galois theory of multiple zeta values leads to a Galois theory of supercongruences.
Supplementary Materials