Abstract
The goal is to design an “intelligent chemical soup� that can do statistical inference. This may have niche technological applications in medicine and biological research, as well as provide fundamental insight into the workings of biochemical reaction pathways. As a first step towards our goal, we describe a scheme that exploits the remarkable mathematical similarity between log-linear models in statistics and chemical reaction networks. We present a simple scheme that encodes the information in a log-linear model as a chemical reaction network. Observed data is encoded as initial concentrations, and the equilibria of the corresponding mass-action system yield the maximum likelihood estimators. The simplicity of our scheme suggests that molecular environments, especially within cells, may be particularly well suited to performing statistical computations.