Approaches and Uncertainties in Predicting Coastal Ecosystem Changes Due to Rising Sea Level
Presenter
October 28, 2015
Abstract
Sea level rise (SLR) is causing changes in coastal vegetation in some locations, negatively affecting freshwater terrestrial ecosystems through salinity intrusion of groundwater and through increased instances of salinity overwash from hurricane-induced storm surges. These effects of SLR cause shifts in the ecotone from freshwater (glycophytic) and salinity tolerant (halophytic) vegetation. Numerous uncertainties make predictions of these shifts difficult. The uncertainties include the obvious difficulty in predicting hurricanes and their effects, but they also include uncertainty in the internal feedbacks between each vegetation type and its local associated soil conditions. These feedbacks may promote resilience to change from disturbances such as storm surges, but disturbances of sufficient size may overcome resilience and lead to vegetation regime shifts. We review a series of models with increasing resolution intended to make predictions concerning effects of both gradual SLR and storm surges on coastal vegetation in southern Florida. In combination with modeling, use of stable isotopes is described as an early indicator of future changes from glycophytic (freshwater hardwood trees) to halophytic (mangrove) trees.