Multi-scale modular modeling of cardiovascular function to probe the etiology of complex cardiovascular disease
Presenter
May 9, 2014
Abstract
It is increasingly recognized that multifactorial diseases arise from interaction between genetic and environmental factors, and physiological systems. Examples of particular relevance to human health include the major health burdens that we face: cardiovascular disease and heart failure; metabolic syndrome and type 2 diabetes; and cancer. In all of these examples, acute and chronic (mal)adaptions of specific molecular mechanism and pathways in disease states occur against a background of physiological regulation. Since processes involved in complex disease operate in the context of physiological regulatory mechanisms, an understanding of a disease process builds upon an understanding of the associated physiological systems.
The Virtual Physiological Rat (VPR) is a multi-national research program combining model-driven experiments and experimentally validated multi-scale models to develop theoretical and computational framework explaining: (1.) the long-term regulation of arterial pressure; and (2.) the etiology and sequelae of hypertensive heart disease, spanning molecular genetic to whole-body function. Recent results elucidating novel hypotheses for the mechanisms underlying primary hypertension and the role of metabolic alterations in heart failure will we presented.