Videos

Modeling cancer evolution from genomic data

Presenter
September 19, 2014
Abstract
Cancer evolution is a stochastic evolutionary process characterized by the accumulation of mutations and responsible for tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to describe the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular profiling data. We present recent approaches to modeling the evolution of cancer, including population genetics models of tumorigenesis, phylogenetic methods of intra-tumor subclonal diversity, and probabilistic graphical models of tumor progression, and we discuss methods for distinguishing driver from passenger mutations.