Videos

The theta rhythm, spatial cognition and the hippocampus

Presenter
March 18, 2013
Abstract
Electrophysiological recordings from neurons in the hippocampal and entorhinal cortices of freely moving rodents provide detailed information regarding the neural representations of spatial location and orientation, and indicate a functional role for neural coding with respect to the theta rhythm of the local field potential. I will describe some of these experiments and the computational mechanisms they imply. These emphasise the roles of environmental boundaries in self-localization, via boundary vector cell firing, and temporal oscillations in the theta band in path integration, via grid cell firing. Both types of information are combined in the firing of place cells. I will describe the implications of these findings for the mechanisms supporting human spatial memory, and provide examples of electrophysiological and functional neuroimaging experiments designed to test these implications.