Abstract
Progress in systems biology relies on the use of mathematical and statistical models for system level studies of biological processes. Several different modeling frameworks have been used successfully, including traditional differential equations based models, a variety of stochastic models, agent-based models, and Boolean networks, to name some common ones. This talk will focus on several types of discrete models, and will describe a common mathematical approach to their comparison and analysis, which relies on computer algebra. Hence, we refer to such models as "algebraic models." The talk will present specific examples of biological systems that can be modeled and analyzed in this way.