Motoring along a nucleic acid strand: template-dictated polymerization of macromolecules of life
Presenter
April 14, 2010
Abstract
Polymerases and ribosome are molecular machines which perform three important biological functions. Like cytoskeletal motors, each of these moves along a track using chemical energy for performing mechanical work. Moreover, it decodes genetic information chemically-encoded in the sequence of the subunits of the track. Furthermore, it polymerizes a macromolecule (DNA, RNA or protein) using the required subunits in a sequence that is dictated by the sequence of subunits of a template which serves also as its track for translocation. Enormous progress has been made in the last decade in understanding the structure and dynamics of these molecular machines using a combination of X-ray crystallography, cryo-electron microscopy, single-molecule imaging and manipulation. In recent years, we have developed models of these machines capturing the key features of their structure and dynamics to gain a quantitative understanding of their operational mechanism. We have also investigated the traffic-like collective movement of ribosomes simultaneously on the same mRNA track (and similar traffic of RNA polymerases on a DNA). We have also suggested new experiments for testing our theoretical predictions on the stochastic translocation-and-pause kinetics of a single motor as well as on their collective spatio-temporal organization.