Abstract
We know, thanks to the Weil conjectures, that counting points of
varieties over finite fields yields purely topological information
about them. In this talk I will first describe how we may count the
number of points over finite fields on the character varieties
parameterizing certain representations of the fundamental group of a
Riemann surface into GL_n. The calculation involves an array of
techniques from combinatorics to the representation theory of finite
groups of Lie type. I will then discuss the geometric implications of
this computation and the conjectures it has led to.
This is joint work with T. Hausel and E. Letellier