Videos

Learning Graphical Models by Competitive Assembly of Marginals

Presenter
October 26, 2011
Keywords:
  • Graphical methods
MSC:
  • 65S05
Abstract
Learning high-dimensional probability distributions with a very reduced number of samples is no more difficult than with a great many. However, arranging for such models to generalize well in the small-sample domain is hard. Our approach is motivated by compositional models and Bayesian networks, and designed to adapt to sample size. We start with a large, overlapping set of elementary statistical building blocks, or "primitives", which are low-dimensional marginal distributions learned from data. Subsets of primitives are combined in a lego-like fashion to construct a probabilistic graphical model. Model complexity is controlled by adapting the primitives to the amount of training data and imposing strong restrictions on merging them into allowable compositions. In the case of binary forests, structure optimization corresponds to an integer linear program and the maximizing composition can be computed for reasonably large numbers of variables.