Videos

The wet-dog shake

Presenter
June 4, 2010
Keywords:
  • Fluids
MSC:
  • 58D30
Abstract
Joint work with Andrew K. Dickerson, Zachary G. Mills, Paul C. Foster (School of Mechanical Engineering, Georgia Institute of Technology). While much attention has been devoted to the ability of animals to propel themselves through fluids, less work has been done on how they exploit fluids in their grooming habits. The problem of how animals clean and dry themselves involves complex flexible surfaces (hair, skin), unsteady speeds, and wetting/de-wetting of drops and fluid ligaments. In this experimental investigation, we investigate the ability of dogs, rats, mice and other hirsute mammals to rapidly oscillate their bodies in order to shed water droplets, nature's analogy to the spin cycle on a washing machine. High-speed videography and fur-particle tracking is employed to determine the angular position of the animal's shoulder skin as a function of time. We formulate the conditions for de-wetting and propulsion of water drops based on the balance of the forces of surface tension, centripetal forces (which tend to pull drops normally from the skin) and angular-acceleration forces (which tend to slide drops). We find that smaller animals shake fastest: specifically, shaking frequency scales as the shoulder radius to the -1/2 power, as is required for centripetal forces on drops to remain constant as animals grow. An important consideration in this process is the looseness of the skin with respect to the body, whose presence increases the peak speed and acceleration of their fur. The energy expenditure and remaining water moisture content of self-drying mammals is estimated.