Videos

Augmented Basis Sets in Finite Cluster DFT

Presenter
October 2, 2008
Keywords:
  • Cluster sets
MSC:
  • 30D40
Abstract
Density functional theory provides a systematic approach to the electronic structure of atoms, molecules and solids. It requires the repeated solution of single particle Schrodinger equations in a self consistent loop. Most techniques involve some sort of basis set, the most common ones being plane waves or Gaussians. In crystalline materials the most accurate solutions involve augmented basis sets. These combine numerical solutions of the Schrodinger equation in regions near the atomic nucleii with so called ‘tail functions’ in more distant regions. In the linear augmented plane wave (LAPW) method the tail functions are plane waves. This formulation has been incorporated into the WIEN2k code. With the current interest in nanoscale clusters, biomolecules, and other finite systems it is desirable to have a comparably accurate method for these. While it is always possible to build supercells, it is often convenient to have completely localized functions which eliminate interaction between periodic images. We recently proposed a finite cluster version of the linear augmented Slater-type orbital (LASTO) method [1]. STO’s have the correct behavior at large distances and possess an addition theorem – they can be re-expanded about other sites with analytic coefficients. We solve the Poisson equation by replacing the spherical part of the density near the nucleii with a smooth pseudo-density. The full potential, including the non-sphrical piece is then solved on a grid. Examples of small clusters and comparison with the Gaussian based program NWChem will be given. [1] K. S. Kang, J. W. Davenport, J. Glimm, D. E. Keyes, and M. McGuigan, submitted to J. Computational Chemistry.