High-speed jet formation after solid object impact
Presenter
July 17, 2008
Keywords:
- Jets
MSC:
- 58A20
Abstract
A circular disc impacting on a water surface creates a
remarkably vigorous jet. Upon impact an axisymmetric air cavity
forms and eventually pinches off in a single point halfway down
the cavity. Immediately after closure two fast sharp-pointed
jets are observed shooting up- and downwards from the closure
location, which by then has turned into a stagnation point
surrounded by a locally hyperbolic flow pattern.
Counter-intuitively, however, this flow is not the mechanism
feeding the two jets. Using boundary-integral simulations we
show that only the inertial focussing of the liquid colliding
along the entire surface of the cavity provides enough energy
to eject the high-speed jets. With this in mind we show how the
natural description of a collapsing void (using a line of sinks
along the axis of symmetry) can be continued after pinch-off to
obtain a quantitative analytical model of jet formation.