Lubrication theory in nearly singular geometries: when should one stop optimizing a reduced model?
Presenter
July 16, 2008
Keywords:
- Shape optimization
MSC:
- 49Q10
Abstract
Shape optimization plays a central role in engineering and
biological design. However, numerical optimization of complex
systems that involve coupling of fluid mechanics to rigid or
flexible bodies can be prohibitively expensive (to implement
and/or run). A great deal of insight can often be gained by
optimizing a reduced model such as Reynolds' lubrication
approximation, but optimization within such a model can
sometimes lead to geometric singularities that drive the
solution out of its realm of validity. We present new rigorous
error estimates for Reynolds' approximation and its higher
order corrections that reveal how the validity of these reduced
models depend on the geometry. We use this insight to study
the problem of shape optimization of a sheet swimming over a
thin layer of viscous fluid.