Elastic theory of non-Euclidean plates
Presenter
July 21, 2008
Keywords:
- Elastic
MSC:
- 74B10
Abstract
Thin elastic sheets are very common in both natural and
man-made structures. The configurations these structures assume in space are
often very complex and may contain many length scales, even in the case of
unconstrained thin sheets. We will show that in some cases, a simple intrinsic
geometry leads to complex three-dimensional configurations, and discuss the
mechanism shaping thin elastic sheets through the prescription of an intrinsic metric.
Current reduced (two-dimensional) elastic theories devised to describe thin
structures treat either plates (flat bodies having no structure along their
thin dimension) or shells (non-flat bodies having a non-trivial structure
along their thin dimension). We propose the concept of non-Euclidean plates,
which are neither plates nor shells, to approximate many naturally formed
thin elastic structures. We derive a thin plate theory which is a
generalization of existing linear plate theories for large displacements but
small strains, and arbitrary intrinsic geometry. We conclude by surveying
some experimental results for laboratory-engineered non-Euclidean plates.