Chaos in a one-dimensional cardiac model
Presenter
July 17, 2008
Keywords:
- Chaos
MSC:
- 34H10
Abstract
Under rapid periodic pacing, cardiac cells typically
undergo a period-doubling bifurcation in which action
potentials of short and long duration alternate with one
another. If these action potentials propagate in a fiber, the short-long
alternation may suffer abrupt reversals of phase at various
points along the fiber, a phenomenon called (spatially)
discordant alternans. Either stationary or moving patterns are possible.
Echebarria and Karma proposed an approximate equation to
describe the spatiotemporal dynamics of small-amplitude
alternans in a class of simple cardiac models, and they showed
that an instability in this equation predicts the spontaneous
formation of discordant alternans. We show that for certain parameter
values a degenerate steady-state/Hopf bifurcation occurs at a multiple
eigenvalue. Generically, such a bifurcation leads one to expect chaotic
solutions nearby, and we perform simulations that find such
behavior. Chaotic solutions in a one-dimensional cardiac model
are rather surprising--typically chaos in the cardiac system
has occurred from the breakup of spiral waves in two dimensions.