Videos

Scientific and statistical challenges to quantifying uncertainties in climate projections

Presenter
June 2, 2011
Keywords:
  • Atmosphere
MSC:
  • 85A20
Abstract
The problem of estimating uncertainties in climate prediction is not well defined. While one can express its solution within a Bayesian statistical framework, the solution is not necessarily correct. One must confront the scientific issues for how observational data is used to test various hypotheses for the physics of climate. Moreover, one also must confront the computational challenges of estimating the posterior distribution without the help of a statistical emulator of the forward model. I will present results of a recently completed estimate of the uncertainty in specifying 15 parameters important to clouds, convection, and radiation of the Community Atmosphere Model. I learned that the maximum posterior probably is not in the same region of parameter space as the minimum log-likelihood. I have interpreted these differences to the existence of model biases and the potential that the minimum log-likelihood, which are often the desired solutions to data inversion problems, are over-fitting the data. Such a result highlights the need for a combination of scientific and computational thinking to begin to address uncertainties for complex multi-physics phenomena.