Recent Developments in Commutative Algebra: "Constructing resolutions using Koszul homomorphisms"
Presenter
April 17, 2024
Keywords:
- Commutative rings
- modules
- ideals
- mixed characteristic
- Frobenius powers
- test ideals
- tight closure
- perfectoid methods
- singularities
- birational algebraic geometry
- multiplier ideals
- symbolic powers
- syzygies
- free resolutions
- homological methods
- derived categories
- polynomials
- monomial ideals
- toric varieties
- Schubert varieties
- combinatorial commutative algebra
- equivariant ideals
- maximal Cohen-Macaulay modules
- applications of representation theory
- twisted commutative algebras
- D-modules
- local cohomology
- computational commutative algebra
MSC:
- 05Exx - Algebraic combinatorics
- 11Sxx - Algebraic number theory: local fields
- 11Txx - Finite fields and commutative rings (number-theoretic aspects)
- 13-XX - Commutative algebra
- 14-XX - Algebraic geometry
- 16Exx - Homological methods in associative algebras {For commutative rings
- see \newline 13Dxx
- for general categories
- see 18Gxx}
- 18Gxx - Homological algebra in category theory
- derived categories and functors [See also 13Dxx
- 16Exx
- 20Jxx
- 55Nxx
- 55Uxx
- 57Txx]
- 19Axx - Grothendieck groups and $K_0$K_0 [See also 13D15
- 18F30]
- 19Lxx - Topological $K$K-theory [See also 55N15
- 55R50
- 55S25]
- 20Jxx - Connections of group theory with homological algebra and category theory
Abstract
This is a talk about a relative version of Koszul duality, and how it can tell us about the asymptotic homological algebra of (seemingly) non-Koszul local rings. It’s all joint work with James Cameron, Janina Letz, and Josh Pollitz.
A homomorphism f of commutative local rings, say S to R, has a derived fibre F (a differential graded algebra over the residue field k of R) and we say that f is Koszul if F is formal and its homology H(F) (the Tor algebra of R and k over S) is a Koszul algebra in the classical sense. I’ll explain why this is a good definition with interesting consequences, and how it is satisfied by many many examples. I might also talk about how to understand these through A-infinity structures.
The main application is the construction of explicit free resolutions over R in the presence of certain Koszul homomorphisms. This construction simultaneously generalises the resolutions of Priddy over a Koszul algebra, the resolutions of Shamash and Eisenbud over a complete intersection ring, and the bar resolutions of Iyengar and Burke over a Golod ring