Abstract
A fractal uncertainty principle (FUP) roughly says that a function and its Fourier transform cannot both be concentrated on a fractal set. These were introduced to harmonic analysis in order to prove new results in quantum chaos: if eigenfunctions on hyperbolic manifolds concentrated in unexpected ways, that would contradict the FUP. Bourgain and Dyatlov proved FUP over the real numbers, and in this talk I will discuss an extension to higher dimensions. The bulk of the work is constructing certain plurisubharmonic functions on C^n.