Videos

Modeling in neuroscience: the challenges of biological realism and computability

Presenter
September 20, 2023
Abstract
Biologically realistic models of the brain have the potential to offer insight into neural mechanisms; they have predictive power, the ultimate goal of biological modeling. These benefits, however, come at considerable costs: network models that involve hundreds of thousands of neurons and many (unknown) parameters are unwieldy to build and to test, let alone to simulate and to analyze. Reduced models have obvious advantages, but the farther removed from biology a model is, the harder it is to draw meaningful inferences. In this talk, I propose a modeling strategy that aspires to be both realistic and computable. Two crucial ingredients are (i) we track neuronal dynamics on two spatial scales: coarse-grained dynamics informed by local activity, and (ii) we compute a family of potential local responses in advance, eliminating the need to perform similar computations at each spatial location in each update. I will illustrate this computational strategy using a model of the monkey visual cortex, which is very similar to that of humans.