Videos

From single neurons to complex networks using algebraic topology

Presenter
October 19, 2023
Abstract
Topological Data Analysis has been successfully used in a variety of applications including protein study, cancer detection, and study of porous materials. Based on algebraic topology, we created a robust topological descriptor of neuronal morphologies and used it to classify and cluster neurons and microglia. But what can topology tell us about the functional roles of neurons in the brain? In this talk, I will focus on focus on the study of the human brain, delving deeper into the fundamental question of neuroscience “whether dendritic structures hold the key to enhanced cognitive abilities”. Starting from the topological differences of mouse and human neurons, we create artificial networks for both species. We show that topological complexity leads to highly inter-connected pyramidal-to-pyramidal and higher-order networks, which is unexpected in view of reduced neuronal density in humans compared to the mouse neocortex. We thus present robust evidence that increased topological complexity in human neurons ultimately leads to highly interconnected cortical networks despite reduced neuronal density. https://www.biorxiv.org/content/10.1101/2023.09.11.557170v1