Videos

Contact Surgeries and Symplectic Fillability

Presenter
October 9, 2023
Abstract
It is well known that all contact 3-manifolds can be obtained from the standard contact structure on the 3-sphere by contact surgery on a Legendrian link. Hence, an interesting and much studied question asks what properties are preserved under various types of contact surgeries. The case for the negative contact surgeries is fairly well understood. In this talk, extending an earlier work of the speaker with Conway and Etnyre, we will discuss some new results about symplectic fillability of positive contact surgeries, and in particular we will provide a necessary and sufficient condition for contact (n) surgery along a Legendrian knot to yield a weakly fillable contact manifold, for some integer n>0. When specialized to knots in the three sphere with its standard tight structure, this result can be effectively used to find many examples of fillable surgeries along with various obstructions and surprising topological applications. For example, we prove that a knot admitting lens space surgery must have slice genus equal to its 4-dimensional clasp number. This is joint work with T. Mark.