Videos

Combinatorial structure of continuous dynamics in gene regulatory networks

Presenter
September 21, 2023
Abstract
Gene network dynamics and neural network dynamics face similar challenges of high dimensionality of both phase space and parameter space, and a lack of reliable experimental data to infer parameters. We first describe the mathematical foundation of DSGRN (Dynamic Signatures Generated by Regulatory Networks), an approach that provides a combinatorial description of global dynamics of a network over its parameter space. Finite description allows comparison of parameterized dynamics between hundreds of networks to discard networks that are not compatible with experimental data. We also describe a close connection of DSGRN to Boolean network models that allows us to view DSGRN as a connection between parameterized continuous time dynamics and discrete dynamics of Boolean modets. If time allows, we discuss several applications of this methodology to systems biology.