Approximating Nash Social Welfare for Submodular Valuations
Presenter
March 31, 2023
Abstract
The Nash social welfare (NSW) problem asks for an allocation of indivisible items to agents in order to maximize the geometric mean of agents’ valuations. This is a common objective for fair division, representing a balanced tradeoff between the often conflicting requirements of fairness and efficiency. The problem is NP-complete already for additive valuation functions. We present a simple, deterministic 4-approximation algorithm for the Nash Social Welfare problem under the general class submodular valuation functions. The previous best approximation factor was 380 via a randomized algorithm.
We also consider the asymmetric variant of the problem where the objective is to maximize the weighted geometric mean of agents’ valuations, and give a (α+2)e-approximation, where α is the ratio between largest weight and the average weight.
This is joint work with Jugal Garg, Edin Husić, Wenzheng Li, and Jan Vondrák.