Semidefinite Optimization with Eigenvector Branching
Presenter
February 27, 2023
Abstract
Semidefinite programming (SDP) problems typically utilize the constraint that X-xx' is positive semidefinite to obtain a convex relaxation of the condition X=xx', where x is an n-vector. We consider a new hyperplane branching method for SDP based on using an eigenvector of X-xx'. This branching technique is related to previous work of Saxeena, Bonami and Lee who used such an eigenvector to derive a disjunctive cut. We obtain excellent computational results applying the new branching technique to difficult instances of the two-trust-region subproblem.