Floer Homotopical Methods in Low Dimensional and Symplectic Topology Workshop: Naturality Issues in Involutive Heegaard Floer Homology
Presenter
November 15, 2022
MSC:
- 57M27
Abstract
Heegaard Floer homology is an invariant of 3-manifolds, and knots and links within them, introduced by P. Oszváth and Z. Szabó in the early 2000s. Because of its relative computability by the standards of gauge and Floer theoretic invariants, it has enjoyed considerably popularity. However, it is not immediately obvious from the construction that Heegaard Floer homology is natural, that is, that it assigns to (eg) a basepointed 3-manifold a well-defined module over an appropriate base ring rather than an isomorphism class of modules, and well-defined cobordism maps to 4-manifolds with boundary. This situation was improved in the 2010s when A. Juhász, D. Thurston, and I. Zemke later showed naturality of the various versions of Heegaard Floer homology. In this talk we consider involutive Heegaard Floer homology, a refinement of the theory introduced by C. Manolescu and I in 2015, whose definition relies on Juhász-Thurston-Zemke naturality but which is itself not obviously natural even given their results. We prove that involutive Heegaard Floer homology is natural and has well-defined maps associated to cobordisms. Despite the apparent technicality of this abstract, this talk is intended to be understandable to an audience not necessarily familiar with Heegaard Floer homology. This is joint work with J. Hom, M. Stoffregen, and I. Zemke.