Videos

Quasianalyticity and support in geometric tomography

Presenter
September 27, 2022
Abstract
Section and projection functions of convex bodies are not arbitrary functions; in fact, other than in dimension and codimension one, they span a rather small subspace of all functions on the grassmannian, which exhibits a quasianalytic-type property. This phenomenon holds for a class of integral operators on grassmannians, and more generally for certain representations of the general linear group. As corollaries, we will see sharper versions of Alexandrov's projections theorem, Funk's sections theorem, and Klain's injectivity theorem for even valuations.