Videos

From configurations on graphs to cohomology of M_{2,n}

Presenter
February 18, 2022
Abstract
The configuration space of particles on a graph is a classifying space for the graph's braid group and thus computes the group cohomology. If instead one considers compactly supported cohomology the resulting groups depend only on the genus of the graph, or "loop order", and admit a particularly interesting action by Out(F_g). In this talk I will explain how tropical geometry relates these latter representations to the cohomology of the moduli spaces M_{g,n} and discuss computational approaches.