Videos

Derived super equivalences from odd categorified quantum groups

Presenter
February 16, 2022
Abstract
Since the pioneering work of Chuang and Rouquier, the construction of highly nontrivial derived equivalences has been one of the most powerful tools resulting from higher representation theory. Cautis-Kamnitzer-Licata showed these derived equivalences arising from categorified quantum groups gave rise to categorical actions of braid groups of the corresponding Lie type with Chuang-Rouquier's equivalences corresponding to the elementary braid generators. In 2011, motivated by the discovery of odd Khovanov homology, Ellis-Khovanov-Lauda proposed a new `odd' categorification of sl2. At the same time, this `odd sl2' was independently discovered by Kang-Kashiwara-Tsuchioka who were investigating super categorifications of Kac-Moody algebras. In this talk we will explain joint work with Mark Ebert and Laurent Vera giving new super analogs of the derived equivalences studied by Chuang and Rouquier coming from the odd categorification of sl2. Just as Chuang and Rouquier used their equivalences to achieve new results on the modular representation theory of the symmetric group, we will discuss how our new super equivalences can be applied to the spin symmetric group.