Videos

Large population games in the weak formulation and their mean field game limits

Presenter
December 6, 2021
Abstract
In this talk we will discuss the infinite population limit of non-Markovian, finite-player stochastic differential games. Examples of such games include optimal execution in non-Markovian models or games with delay. We will argue that the weak formulation of the game is particularly well-suited for their analysis in the present non-Markovian setting. The asymptotics of the finite population game will be discussed based on a new form of propagation of chaos involving interacting particles with interactions through the control process of a system of backward stochastic differential equation. Finally, some seemingly new existence results will be discussed. This is based on a joint work with Dylan Possamaï.