Videos

Infancy Longitudinal Structural MRI Data Analysis with Path Signature Features for the Cognitive Scores Prediction

Presenter
July 6, 2021
Abstract
Path signature has unique advantages on extracting high order differential features of sequential data. Our team has been studying the path signature theory and actively applied it to various applications, including infant cognitive score prediction, human motion recognition, hand-written character recognition, hand-written text line recognition and writer identification etc. In this talk, I will share our most recent works on infant cognitive score prediction using learnable path signature features and simple deep learning models. The cognitive score can reveal individual’s abilities on intelligence, motion, language abilities. Recent research discovered that the cognitive ability is closely related with individual’s cortical structure and its development. We have proposed two frameworks to predict the cognitive score with different path signature features. For the first framework, we construct the temporal path signature along the age growth and extract signature features from longitudinal structural MRI data. By incorporating the cortical temporal path signature into the multi-stream deep learning model, the individual cognitive score can be predicted, even with missing data issues. For the second framework, we propose the learnable path signature algorithm to compute the developmental feature. Further, we obtain the brain region-wise development graph for the first two-year infant. Then we have employed the graph convolutional network for the score prediction. These two frameworks have been tested on two in-house cognitive data sets and reached state-of-the-art results.