On combinatorics of Arthur's trace formula, convex polytopes, and toric varieties
Presenter
April 14, 2021
Abstract
I start by discussing two beautiful well-known theorems about decomposing a convex polytope into an signed sum of cones, namely the classical Brianchon-Gram theorem and Lawrence-Varchenko theorem. I will then explain a generalization of the Brianchon-Gram which can be summerized as ""truncating a function on the Euclidean space with respect to a polytope"". This is an extraction of the combinatorial ingredients of Arthur's ''convergence'' and ''polynomiality'' results in his famous trace formula. Arthur's trace formula concerns the trace of left action of a reductive group $G$ on the space $L^2(G / \Gamma)$
where $\Gamma$ is a discrete (arithmetic) subgroup. The combinatorics involved is closely related to compactifications of ''locally summetric spaces'' (which btw are hyperbolic manifolds). Our ''combinatorial truncation'' can be thought of as an analogue of Arthur's truncation over a toric variety (in place of a compactification of a locally symmetric space). If there is time, I will briefly sketch geometric interpretations of our combinatorial truncation as a measure and a Lefschetz number on a toric variety respectively. This is a joint work in progress with Mahdi Asgari (Oklahoma State).