Positroids, knots, and q,t-Catalan numbers
Presenter
March 26, 2021
Abstract
We relate the cohomology of open positroid varieties and their point counts over finite fields to knot homology. In particular, we show that the bigraded Poincaré polynomials of top-dimensional open positroid varieties are given by rational q,t-Catalan numbers. As a consequence of the curious Lefschetz property, we obtain q,t-symmetry and unimodality statements for rational q,t-Catalan numbers. Joint work with Thomas Lam.
No special background on the above objects will be assumed.