Videos

Differential operators for Schur and Schubert polynomials

Presenter
March 24, 2021
Abstract
We study differential operators for Schur and back stable Schubert polynomials. Our operators are based on two operators of degree (-1), which satisfy Leibniz rule. For the case of Schur functions, these two operators fully determine the product of Schur functions, i.e., it is possible to define Littlewood-Richardson coefficients only using these operators. This new point of view on Schur functions gives us an elementary proof of The Giambelli identity and Jacobi-Trudi identities. For the case of Schubert polynomials, we construct a larger class of decreasing operators, which are indexed by Young diagrams. Operators from this family are related to Stanley symmetric functions. In particular, we extend bosonic operators from Schur to Schubert polynomials.
Supplementary Materials