Lecture #3: Bounded gaps between volumes of orbifolds
Presenter
September 4, 2020
Abstract
In this lecture, we sketch a proof that there are innitely many k-tuples of arithmetic, hyperbolic 3-orbifolds which are pairwise non-commensurable, have certain prescribed geodesic lengths, and have volumes lying in an interval of bounded length. One of the key ideas stems from the breakthrough work of Maynard and Tao on bounded gaps between primes. We will introduce the Maynard-Tao approach and then discuss how it can be applied in a geometric setting. This talk is based on joint work with B. Linowitz, D. B. McReynolds, and P. Pollack.