Videos

Causality matters in medical imaging

Presenter
January 30, 2020
Abstract
Ben Glocker Imperial College Department of Computing We use causal reasoning to shed new light on key challenges in medical imaging: 1) data scarcity, which is the limited availability of high-quality annotations, and 2) data mismatch, whereby a trained algorithm may fail to generalize in clinical practice. We argue that causal relationships between images, annotations, and data-collection processes can not only have profound effects on the performance of predictive models, but may even dictate which learning strategies should be considered in the first place. Semi-supervision, for example, may be unsuitable for image segmentation - one of the possibly surprising insights from our causal considerations in medical image analysis. We conclude that it is of utmost importance for the success of machine-learning-based image analysis that researchers are aware of and account for the causal relationships underlying their data.
Supplementary Materials