Abstract
The problem of finding metrics with constant Q-curvature in a prescribed conformal class is an important fourth-order cousin of the Yamabe problem. In this talk, I will explain how certain variational bifurcation techniques used to prove non-uniqueness of solutions to the Yamabe problem also yield non-uniqueness results for the constant Q-curvature problem. However, special emphasis will be given to the differences between multiplicity phenomena in these two variational problems. This is based on joint work with P. Piccione and Y. Sire.