Videos

Cellular control of network rhythmic activity

Presenter
September 13, 2017
Abstract
Nervous system functions are regulated by fast and localized modulation of neural network rhythmic activity. This feature is conserved amongst very different systems, ranging from invertebrate central pattern generators to mammal midbrain and cortical structures. These systems however strongly differ in their structure, function and physiological properties, and are regulated by a large number of interconnected mechanisms, which makes the extraction of key players in the robust regulation of rhythmic activity an arduous task. This talk will introduce a cellular dynamical property called slow regenerativity from which robust and tunable modulation of rhythmic activity can emerge in many different systems, both at the cellular and network levels. It will discuss the ubiquity of slow regenerativity for the control of nervous system activity and illustrate its significance through several key physiological examples.