Videos

Understanding Lamprey Locomotion Using an Interdisciplinary Approach

Presenter
September 13, 2017
Abstract
Lamprey locomotion involves electrical signal in the central nervous system, to the force generation of the muscle, to the interaction between the body and the environment. Proprioceptive feedback from sensory organs, called edge cells, are known to modulate the rhythm of the electrical signal in the spinal cord. Modeling this set of complex systems involves coupled oscillators, representing the central pattern generator (CPG) for locomotion, a Hill-type muscle model for force generation, and a fluid-elastic body interaction that simulates the body in the fluid environment. Understanding this complex system involves an integrated interdisciplinary approach that combines biological experiments, experimental fluid dynamics, and different types of mathematical models for the CPG, muscle, body and fluids. In this talk, I will discuss the work of an interdisciplinary team of researchers that have combined their expertise to further understand this complex problem. Joint work with: Eric Tytell (Tufts), Tim Kiemel (UMCP), Lisa Fauci (Tulane), Christina Hamlet (Buchnell), Nicole Massarelli (Schoolcraft College), Megan Leftwich (GWU)