Correlations of von Mangoldt and higher order divisor functions
Presenter
May 3, 2017
Keywords:
- von Mongoldt function
- multiplicative functions
- divisor functions
- correlation sums
- shifted convolution sums
MSC:
- 11N99
- 11N37
- 11N25
- 11K70
- 11K99
Abstract
I will discuss joint work with M. Radziwill and T. Tao on asymptotics for the sums $\sum_{n \leq x} \Lambda(n) \Lambda(n+h)$ and $\sum_{n \leq x} d_k(n) d_l(n+h)$ where $\Lambda$ is the von Mangoldt function and $d_k$ is the kth divisor function. For the first sum we show that the expected asymptotics hold for almost all $|h| \leq X^{8/33}$ and for the second sum we show that the expected asymptotics hold for almost all $|h| \leq (\log X)^{O_{k, l} ( 1) }$.