Back to Videos
This is a video about Sparse regular random graphs: spectral density and eigenvectors

Sparse regular random graphs: spectral density and eigenvectors

September 21, 2010
MSRI
Presenters: Ioana Dumitriu
Length: 2 hours 20 minutes 6 seconds

Watch Video 

Abstract

Adjacency matrices of regular random graphs are a good example of non-Wigner ensembles for which the semicircle law still holds, in various regimes. The one we focus on is when the degree is polylogarithmic in the number of vertices (a "sparse" case). We show that the empirical spectral distribution converges to the semicircle law, estimate the rate of convergence (also known as the "local semicircle law"), and show some results that point toward the delocalization and lack of bias for the second through last eigenvectors.

Download Abstract